Dependence measure for length-biased survival data using copulas
نویسندگان
چکیده
منابع مشابه
Inference on Quantile Residual Life for Length-biased Survival Data
Length biased data occurs when a prevalent sampling is used to recruit subjects into a study that investigates the time from an initial event to a terminal event. Such data are usually left-truncated and right-censored. While there have been accurate and efficient methods to estimate the survival function, not much work has been done regarding the estimation of the residual life time distributi...
متن کاملA Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data
Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...
متن کاملQuantile Regression Analysis of Length-Biased Survival Data
Analysis of length-biased time-to-event data, which commonly arise in epidemiological cohort studies and cross-sectional surveys, has attracted considerable attention recently. Ignoring length-biased sampling often leads to severe bias in estimating the survival time in the general population. Existing work either completely ignore the covariate effects or use hazard or accelerated failure time...
متن کاملMultivariate dependence modeling using copulas
In this contribution we review models for construction of higher dimensional dependence that have arisen recent years. In particular we focus on specific generalized Farlie Gumbel (or Sarmanov) copulas which are generated by a single function (so-called generator or generator function) defined on the unit interval. An alternative approach to generalize the FGM family of copulas is to consider t...
متن کاملSurvival analysis without survival data: connecting length-biased and case-control data.
We show that relative mean survival parameters of a semiparametric log-linear model can be estimated using covariate data from an incident sample and a prevalent sample, even when there is no prospective follow-up to collect any survival data. Estimation is based on an induced semiparametric density ratio model for covariates from the two samples, and it shares the same structure as for a logis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Dependence Modeling
سال: 2019
ISSN: 2300-2298
DOI: 10.1515/demo-2019-0018